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Abstract. An asset whose price exhibits geometric Brownian motion is analysed. The basic Brownian
motion model is modified to account for the effects of market delay and investor feedback. A Langevin
equation model is appropriate. When the feedback coupling is sufficiently strong, the market dynamics
switches from a slow random walk behaviour to a rapid unstable behaviour with a fast time scale char-
acteristic of the market delay. The unstable runaway behaviour is subsequently quenched by investors
deserting a collapsing market or saturating a booming one. This quenching effect is sufficient to ensure
long term bounding of the asset price. A form of market sabotage is demonstrated in which investors can
push the market from a stable to an unstable regime.

PACS. 02.50.Ey Stochastic processes – 89.90.+n Other areas of general interest to physicists

1 Introduction

The year 2000 marks the centenary of the publication of
Bachelier’s classic treatise on price dynamics in financial
markets [1,2]. The basic premise of this work is that asset
prices undergo a geometric Brownian motion [3]. Thus for
an asset price P and time t, one assumes

d logP
dt

= ν + σΞ(t), (1)

where log denotes the natural logarithm, the constants
ν and σ are respectively mean growth rate and market
volatility, and Ξ(t) is a random white noise process. A
consequence of equation (1) is that, if logP has a known
initial value logP0, thereafter the variance of logP scales
like σ2t, and thus σ2 represents a price diffusivity.

This geometric Brownian motion model has met with
some spectacular successes. Many modern theories of op-
tion pricing [4] are based on a derivation that implic-
itly assumes an underlying geometric Brownian motion.
Nonetheless it is still valid to ask whether a more realistic
model of asset price dynamics might be available, which
describes markets better than equation (1). When seeking
new, more realistic financial models, researchers have of-
ten turned to the physical world for inspiration, since the
study of Brownian phenomena in physics is already quite
mature. This practice has led to the emerging discipline
of “econophysics” [5–8].

One of the key elements of real markets which equa-
tion (1) fails to describe is the feedback between investor
activity determining supply and demand and hence affect-
ing asset price. Thus while equation (1) might be appro-
priate to describe a situation during which investors are
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acting more or less randomly or independently of one an-
other, it would not describe those periods when investors
were acting in concert or collectively. This sort of collec-
tive behaviour would be the basis of a speculative boom,
a stock market crash or a currency crisis.

A recently formulated model [9,10] has attempted to
address these feedback related issues. It divides investors
into two groups: fundamentalists, who perceive that a each
asset has a definite or fundamental value regardless of its
actual market price, and chartists, who merely follow mar-
ket trends. The fundamentalists tend to stabilize markets,
by restoring the actual market price to the fundamental
value, while the chartists destabilize them, through their
collective behaviour or herd mentality. Following the prac-
tice in statistical physics, transition probabilities were as-
signed between fundamentalist and chartist groups, with
the actual probabilities depending on market conditions.
The model discovered intermittent noisy bursts, during
which the actual price fluctuated over a wide amplitude.
This was despite the fact that incoming news about the
asset, which influences the fundamental value, exhibited
no such bursts. Instead the bursts were identified with pe-
riods of unusually high population in the chartist group.
The bursts were short lived, because the fundamentalists
tended to stabilize the market whenever the actual as-
set price deviated too far from the fundamental value.
Feedback-induced bursting also caused an anomalously
high statistical weight to be assigned to the tail of the dis-
tribution of short term price changes, a contrast from the
Gaussian distributions produced when feedback is absent.

Various other financial models exist in the physics
literature which incorporate elements of collective be-
haviour or feedback [11–20]. These models exhibit sim-
ilar bursts and again produce anomalous non-Gaussian
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shapes for the price change distribution. There is some
disagreement in the literature as to precisely which weight
should be assigned to these non-Gaussian tails. Some sug-
gestions are the Lévy distribution [21,22], various power
laws [9,23,24], stretched exponentials [25], and simple ex-
ponential tails [26–29]. A very good candidate is the so
called truncated Lévy distribution [26–29], which essen-
tially gives a power law in the near tail and a simple ex-
ponential in the far tail.

Another aspect of real markets that one might seek
to describe is delay. The market itself and the investors
within it take a small but finite time to respond to in-
coming news affecting an asset. With the advent of inter-
net technology and computer trading these response times
have shrunk dramatically, say to the order of minutes. Cer-
tainly this time scale is small compared with the diffusive
time scale associated with a pure geometric Brownian mo-
tion, which may be on the order of years. Indeed a specula-
tive boom or a market crash may be said to be associated
with a shift from dynamical behaviour on the slow diffu-
sive time scale to dynamics controlled by the very much
smaller delay time.

These effects have been modelled by Bouchaud and
Cont [29,30] again applying ideas from physics. They have
used as their basis a Langevin model, employed in physics
to describe Brownian particles with inertia [31–37]. Such
particles possess two governing time scales, an inertial re-
laxation time and a diffusive time, with the former often
much smaller than the latter. The particle velocity, rather
than depending on the instantaneous Brownian force, as
would be the case for a pure inertialess Brownian motion,
depends instead on all the random forces over roughly one
inertial time scale in the recent past. The particle position
however depends on the entire forcing history, except for
forcing in the recent past, which has not yet realized its
full influence. Thus an inertial particle executes a random
walk very similar to that of an inertialess particle, but it
is less jagged, being smoothed on the order of an inertial
relaxation time [36,37], and it also lags behind the corre-
sponding inertialess particle by a comparable amount.

The financial Langevin model [29,30] includes feed-
back effects in addition to delay. In the governing equa-
tions, positive feedback from chartist-like behaviour af-
fects the market relaxation rate term, which is analogous
to friction in the Langevin equation. Positive feedback re-
duces relaxation rate, giving a heightened sensitivity to
random forcing, along with more persistent random ef-
fects. If the feedback is strong enough, the net “friction”
reaches a critical point where it switches from positive to
negative. In the financial context, this means that the act
of buying a block of shares, forces the price up, leading to
a further share purchase even larger than the original, and
so on. The time between each subsequent round of buy-
ing is on the order of the market delay time, so the asset
price runs away on this time scale. The dynamics are no
longer governed by the diffusive time scale of the geomet-
ric Brownian motion, but instead by a much smaller delay
time.

There were a number of other effects added to the fi-
nancial Langevin model. A fundamentalist type term was
included representing the true value of an asset, rather
than its current market price. Inherently unstable mar-
kets were found to support speculative bubbles during
which growth of the market price bore little relation to
true value. These inevitably burst when the price-value
discrepancy became insupportable. Risk aversion was also
present, i.e. investors choose non-volatile in preference to
volatile markets, and in addition they buy rising assets
cautiously, but sell falling ones immediately. This implied
that even in a nominally stable market (i.e. one with pos-
itive “friction” for small fluctuations), crashes could still
occur, being induced by rare events (large negative price
fluctuations) frightening the investors.

The purpose of the present paper is to investigate a
particularly simple Langevin model for an asset price, in-
volving delay and positive feedback, along with a mecha-
nism for stopping unstable markets from running away in-
definitely. The aims are both to study the characteristics of
individual trajectories in stable and unstable regimes, and
to analyse the statistics of log price and its rate of change.
Stability criteria will be established, and also a procedure
by which chartists can sabotage markets by modulating
their own behaviour. No explicit fundamentalist term act-
ing to restore prices to some true value will be included
here. Instead we rely on instabilities being controlled via
a weaker mechanism consisting of chartists deactivating
once they have either abandoned or saturated a market.
For convenience we shall refer to this control mechanism
as quenching. It is found that quenching on its own is suf-
ficient to ensure well-behaved markets in the long term.

The structure of the rest of the paper is as follows.
In the next section we introduce and derive the Langevin
model to be considered. Following that we consider a num-
ber of theoretical results that can be derived using the
model. The paper then turns to numerical issues: first
with a discussion of suitable numerical algorithms, and
then with results. Finally concluding remarks are made,
and possible extensions to the model are considered.

2 Model with delay, feedback and quenching

In this section we formulate the model to be used in this
paper. As stated above our aim is to understand delay,
feedback and quenching, and so we have chosen the barest
possible model capable of describing those effects. As we
are interested in possible market instabilities, and it is
chartists rather than fundamentalists who are the root
cause of these, no fundamentalist type terms will be in-
cluded in the model. Likewise, in the interests of simplic-
ity, we consider a market that is static on average. There is
no mean growth term to make shares increasingly attrac-
tive over time, nor any interest rate, which discriminates
against share buying in favour of “riskless” investments.
The rationale for ignoring these terms in the present in-
stance is that we want to focus attention on the rapid time
scale events (stock market booms and crashes) that have
dynamics on the order of one delay time. Mean growth
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and interest rates are longer time scale effects, which may
influence how often the rapid catastrophic events occur,
but play no role in the dynamics of the rapid events
themselves.

The model has two essential ingredients. First it must
describe how an asset price is affected by chartists, and
second how chartists respond to asset price.

We shall use the symbol S to denote the proportion
of available chartist capital currently invested in the asset
under question. For simplicity we shall refer to S as the
saturation, representing as it does the extent to which
chartists have become saturated.

If the chartists take the initiative in share trading,
price may be assumed to be forced by the rate dS/dt at
which they acquire or dispose of their portfolios. There
is a proportionality factor here, which we denote by the
symbol M , which determines the market sensitivity to
chartists. In addition to this chartist feedback term, we
assume that price is still affected by incoming random
news about the asset, which will continue to be modelled
by a Brownian white noise.

Both the chartist feedback and the random effects are
supposed not to affect the market immediately, but only
after some appropriate delay. Throughout the paper we
assume that time is made dimensionless based on the price
diffusivity. The dimensionless delay time, which we denote
∆t, will therefore be much smaller than unity.

Thus in place of the geometric Brownian motion de-
scribed by equation (1), we have the dimensionless equa-
tion for evolution of log price

∆t
d2 logP

dt2
+

d logP
dt

= Ξ(t) +M
dS
dt
· (2)

Here Ξ is white noise satisfying 〈Ξ(t)〉 = 0 for all t, and

〈Ξ(t)Ξ(t′)〉 = 2δ(t− t′), (3)

for times t and t′ with δ(t − t′) denoting the Dirac delta
function. This white noise can be realized in a computer
simulation as follows. First choose a time step δt much
smaller than any other time scale in the problem, in this
case much smaller than the delay ∆t. Then for each time
step assign a random number ξ with zero mean and vari-
ance two. Finally define

Ξ =
ξ

δt1/2
· (4)

The second part of the model must describe how the
chartists respond to price changes. We assume that their
rate of acquiring or disposing of assets simply follows the
rate of change of log price. A constant of proportionality
R measures how responsive the chartists are to market
conditions. We have the dimensionless equation

dS
dt

= R
d logP

dt
· (5)

Note that, in the interests of simplicity, no investor delay
has been incorporated in equation (5). Such an investor,

who can respond to changing conditions faster than the
market as a whole, could clearly devise investment strate-
gies superior to equation (5), and thereby maximize earn-
ings. However the aim in this paper is not to investigate
strategies, but rather to model the sort of chartist collec-
tive behaviour that can lead to market booms and crashes.
At this level of modelling, it is only considered important
that there be a delay somewhere in the model, and that
this delay time be much smaller than the time scale of the
pure geometric Brownian motion.

There are however important budgetary constraints on
the model at S = 0 (lower constraint boundary) and S = 1
(upper constraint boundary). At S = 0 chartists no longer
have assets to sell to create excess supply, while at S = 1
they no longer have funds to commit to create excess de-
mand. For simplicity we assume that these boundaries at
S = 0 and S = 1 are hard: speculators are prepared to
withdraw entirely from the market, but they are not pre-
pared to sell assets they do not yet possess; likewise they
will risk their entire capital, but will not borrow money to
continue speculating beyond this point. Thus at S = 0 or
S = 1 precisely, equation (5) ceases to be valid, and the
feedback term in equation (2) switches off. In the absence
of feedback, runaway prices tend to decelerate, and this is
the process we refer to as quenching. Feedback will only
switch back on again after a complete deceleration when
d logP/dt changes sign. This reactivates the chartists, and
moves the saturation S away from the constraint bound-
aries. It is conceivable while attempting to leave a bound-
ary, S may exhibit a number of false starts, beginning to
move away from the constraint, but failing to reach its
normal speed, and then crashing back into the boundary.
We shall use the term dither to refer to this phase of the
dynamics, and analyse it more closely in a later section.

To summarize, a model has been derived which con-
tains the desired ingredients of market delay, positive feed-
back and a mechanism for quenching runaway markets.
The derivation has ignored investor delay, mean market
growth, interest rates and the influence of fundamental-
ists. These will be considered briefly in Section 6.

2.1 Derivation of a Langevin equation

Away from constraint boundaries, we can substitute
equation (5) into equation (2) to obtain a Langevin equa-
tion for logP

∆t
d2 logP

dt2
+

d logP
dt

= Ξ(t) +MR
d logP

dt
· (6)

The Langevin equation derived here is very similar to that
ultimately derived by Bouchaud and Cont [30]. The under-
lying models are slightly different. There is no delay term
nor randomness directly affecting price in the Bouchaud
and Cont model, only a supply-demand type feedback. To
compensate however those authors allow delay and ran-
domness to regulate investor behaviour, which is not the
situation here.
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3 Theoretical results

Langevin equation (6) is linear, and hence exactly solvable
given a sequence of random forces. This fact along with
the known statistics of the random forces can be used
to derive a set of useful statistical results for logP and
d logP/dt.

The main observation about equation (6) concerns its
stability. The d logP/dt term on the left hand side de-
scribes the relaxation of the market and in physical terms
plays the role of friction. The MRd logP/dt term on the
right hand side is the positive feedback term, and has the
effect of reducing the friction. A critical point is surpassed
when the product MR exceeds unity. In that case rather
than the effects of random forces gradually dying away,
they become magnified over time. The market is then un-
stable. Random effects in the early history of the market
determine its subsequent behaviour, and cannot be over-
come by more recent forcing. The mechanism is as de-
scribed earlier, namely the act of buying a block of shares,
induces further share buying even greater than the original
purchase, making the market run away extremely rapidly.

Suppose that the initial value of logP is logP0, and for
simplicity that the initial value of d logP/dt vanishes. Well
known results from statistical physics [31–33,36,37] for
Langevin equation (6) can be used to determine the stan-
dard deviation (logP − logP0)rms, the root mean square
price velocity (d logP/dt)rms, and the correlation coeffi-
cient between log price and velocity rcorr. Although results
are available for arbitrary t values, most interest will focus
on the regime t � ∆t so we give the asymptotic results
for that case first. Quite different behaviour is found in
the stable MR < 1 and unstable cases MR > 1 and we
treat these separately.

3.1 The stable regime

In the stable case, we define a parameter

Λs = 1−MR, (7)

and we find

(logP − logP0)rms =
(

2t
Λ2

s

)1/2

, (8)(
d logP

dt

)
rms

= (Λs∆t)
−1/2 , (9)

rcorr =
(
∆t

2Λst

)1/2

. (10)

Note that equation (8) describes a diffusive motion, as
one would obtain with a pure geometric Brownian mo-
tion. However the feedback has made the market more
volatile: the price diffusivity has increased from unity to
Λ−2

s . A small correction−3∆tΛ−3
s can also be included on

the right hand side of equation (8), which indicates that
a market with delay lags slightly behind true Brownian
motion.

Equation (9) indicates that price velocity is large, scal-
ing as ∆t−1/2. It is noteworthy that this result is math-
ematically equivalent to the equipartition of energy in
statistical mechanics: particles with less inertia (less de-
lay), travel faster. Note moreover that for a pure geomet-
ric Brownian motion given by equation (1) with random
force Ξ satisfying equation (4), the price velocity is larger
still. It scales as δt−1/2, where δt is assumed smaller than
all other time scales in the problem. Thus equation (9)
demonstrates the smoothing effect of the delay time ∆t
on the random motion.

Equation (10) indicates a small and decaying correla-
tion between logP − logP0 and d logP/dt, so that know-
ing the current price is no help in determining whether
price is actually increasing or decreasing. This happens
because logP depends on the entire past forcing history,
but d logP/dt only upon the recent past.

3.2 The unstable regime

In the unstable case we define

Λu = MR− 1, (11)

and then we find, still with t� ∆t,

(logP − logP0)rms =
(
∆t

Λ3
u

)1/2

exp
Λut

∆t
, (12)(

d logP
dt

)
rms

= (Λu∆t)
−1/2 exp

Λut

∆t
, (13)

rcorr = 1. (14)

Runaway exponential growth can be readily seen for both
(logP − logP0)rms and (d logP/dt)rms. The exponential
rate constant equals Λu/∆t. A high correlation between
logP − logP0 and d logP/dt now exists, because early
forcing alone determines the direction in which the market
evolves. Later forcing cannot overcome this.

We emphasize that this behaviour is an unconstrained
result based on linear equation (6). In reality the fact that
S is constrained between 0 and 1, will rapidly limit this
exponential growth.

3.3 The marginal stability case

In the marginal stability case MR → 1 the following re-
sults apply

(logP − logP0)rms =
(

2t3

3∆t2

)1/2

, (15)(
d logP

dt

)
rms

=
(

2t
∆t2

)1/2

, (16)

rcorr =
√

3
2
· (17)

In addition to MR → 1, these results also apply to gen-
eral values of Λs or Λu in the regime t � ∆t, before
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the relaxation and feedback terms have had much oppor-
tunity to act. It can be seen from equations (15, 16) how
delay makes the market much slower starting than a true
Brownian motion. In equation (17) one sees that the cor-
relation coefficient begins with an intermediate value, and
it must either decay to zero (stable) or grow to unity
(unstable) from there. In a numerical implementation,
a few Brownian time steps are actually required before
equations (15–17) are realized, but these first few steps
may be neglected given δt� ∆t.

3.4 Treatment of constraints

The theoretical results we have considered all pertain to
the linear Langevin equation. Nonlinearities however arise
due to the presence of the constraints at S = 0 and S = 1.
A full treatment of the nonlinearities requires a numerical
solution, discussed in Sections 4, 5. However a number of
heuristic analytical results can be derived before proceed-
ing with numerics.

First note that, although the Langevin equation only
depends on M and R as a product MR, the separate val-
ues are important in determining the time at which the
system encounters a constraint boundary. We note that
to hit one constraint boundary starting from the other, S
must change by unity, and hence by equation (5), logP
must change by R−1. A rough estimate of the time taken
to cross from one boundary to the other can be obtained
by equating (logP − logP0)rms to R−1. If we use the sym-
bol tc to denote this crossing time, we find

tc ≈ 1
2

(1−MR)2

R2
, (18)

in the stable regime, and

tc ≈
∆t

(MR− 1)
log

(MR− 1)3/2

R∆t1/2
≈ O

(
∆t

(MR− 1)

)
,

(19)

when the system is unstable. In equation (19) it is ex-
pected that the logarithmic term remains near unity.

In the unstable system, once the crossing is underway,
the system should remain unidirectional and hence

d logP
dt

∣∣∣∣crossing

= O
(
(Rtc)−1

)
= O

(
(MR− 1)
R∆t

)
. (20)

As the unstable trajectory is by and large determined once
an initial fluctuation has moved it off the boundary, we
could attempt to model this trajectory by

logP − logP0 = ± logPi exp
Λut

∆t
, (21)

where logPi here represents the initiation fluctuation that
starts the price moving.

Clearly in equation (21) the log price starts off moving
slowly, but increases in speed as it approaches the op-
posite boundary. If the probability distribution of logP

values scales inversely as the local speed, we can deduce a
probability density P function for a single traverse

P ∝ (logP − logP0)−1, (22)

in the domain logP > logP0 + logPi. As the changes in S
follow those in logP and as the system is symmetric about
the lower and upper boundaries, we guess a probability
density averaged over many traverses

P ∝ S−1 + (1− S)−1. (23)

This is quite distinct from the stable case, where price
velocity is uncorrelated with price itself. In that case a
rather flatter probability distribution is expected.

If we identify logP − logP0 from equation (21) with
the unstable (logP − logP0)rms from equation (12) then
we deduce

logPi =
(
∆t

Λ3
u

)1/2

. (24)

If Λu is increased, traverses can be initiated by increasingly
small fluctuations, and so the time spent dithering waiting
for a suitable fluctuation should be less. A bound on the
root mean square velocity during the dither phase can
be obtained by differentiating equation (21) with respect
to time, and evaluating at t = 0 just as the dither is
ending and the crossing is about to begin. This produces
a result scaling as ∆t−1/2, which is considerably less than
the O(∆t−1) velocity anticipated by equation (20) during
a crossing.

4 Numerical algorithm

The estimates presented in the previous section have ei-
ther ignored the constraints altogether, or treated them
in a heuristic fashion. In order to take proper account of
constraints a numerical solution is required. Bearing in
mind the pitfalls associated with simulating constrained
stochastic differential equations [35], great care has been
taken to produce a numerical algorithm suitable for the
particular equations that we consider in this paper. The
principal difficulty with formulating a numerical algorithm
of high order accuracy can be expressed as follows. In or-
der to update log price accurately, one needs to know the
price velocity and price acceleration. However owing to the
on-off nature of the chartist feedback term, and the fact
that the exact switching point is determined by price, in
order to obtain the price acceleration, one actually needs
to know the price in advance.

We have therefore adopted an algorithm at a level of
accuracy such that only Brownian accelerations, not re-
laxation nor chartist feedback terms, are required in the
update of logP . An explicit numerical method is then fea-
sible. We discuss this in three parts, the update of logP ,
the update of S and the update of d logP/dt. Those read-
ers uninterested in the details of the algorithm, but only
in the results, are advised to skip to Section 5.
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4.1 Update of log P

The update of logP is the most straightforward part of
the algorithm. Although we are ultimately only interested
in values of time separated by intervals δt, it is convenient
for what follows to define a continuous variable t′ ranging
between 0 and δt. We shall use the symbol δ logP (t′) to
denote the change in logP between 0 and t′, and reserve
the symbol δ logP with no argument to denote the change
across the full step.

If d logP/dt|0 denotes the price velocity at the begin-
ning of the step, the algorithm assumes

δ logP (t′) =
d logP

dt

∣∣∣∣
0

t′ +
ξ

δt1/2∆t
1
2 t
′ 2, (25)

and hence

δ logP =
d logP

dt

∣∣∣∣
0

δt+ 1
2

ξ δt3/2

∆t
· (26)

The rationale for retaining the Brownian price acceler-
ation term, but discarding the relaxation and feedback
terms, is the large magnitude of the Brownian force which
scales as δt−1/2. Remembering that d logP/dt, at least
for a stable market, is typically O(∆t−1/2), the discarded
terms would affect δ logP by O(δt2∆t−3/2), which is the
per step error of the scheme.

4.2 Update of S

The update of the saturation S proceeds by first doing an
unconstrained step, then checking whether the constraints
on S are violated at any point in the step, and finally doing
the actual update.

We define the unconstrained change δSuncon(t′) at an
arbitrary time t′ during the step to be

δSuncon(t′) = Rδ logP (t′)

= R

(
d logP

dt

∣∣∣∣
0

t′ +
ξ

δt1/2∆t
1
2 t
′ 2
)
. (27)

We need to determine whether the change caused by
equation (27) leads to a violation of the constraints at
any point during the step. It is sufficient here to consider
the endpoints of the step interval, and any turning points
that might occur during it. If no constraint violations oc-
cur then the saturation change across the full step, which
we denote δS, just equals the unconstrained change, and
hence

δS = Rδ logP = R

(
d logP

dt

∣∣∣∣
0

δt+ 1
2

ξ δt3/2

∆t

)
. (28)

If a constraint violation occurs, and there is no turning
point in the constrained zone, then the saturation finishes
the step on the constraint boundary with either S = 0 or
S = 1 as appropriate. This is indicated in Figure 1a. If
a turning point occurs during a constraint violation, then

(a)

-

6

0

S

�t

t0

AA

AA

AA

AA

AA

AA

AA

AA

(b)

-

6

0

S

�t

t0

Fig. 1. Chartist saturation S encountering a constraint. (a)
The unconstrained S (thin line) falls below zero at some in-
termediate time between 0 and δt. The constrained S deviates
from the unconstrained value after this time, and is fixed at
zero for the remainder of the step (thick line). This represents
a switching off of the positive feedback in the model, and the
initiation of quenching. When determining the switch-off time
for the purposes of updating d logP/dt a linear approximation
for the unconstrained S (dashed line) is adequate. (b) The un-
constrained S (thin line) falls below zero, but has a turning
point during the step at some intermediate time between 0
and δt. The constrained S (thick line) is initially held at zero,
until after the turning point, when saturation starts increasing,
copying the increase of the unconstrained S. This represents a
switching on of the positive feedback, which may generate in-
stability. Although the sketches in this figure are specific to the
lower constraint boundary S = 0, it is obvious that analogous
mechanisms apply at the upper constraint boundary S = 1.

chartist share trading recommences at the turning point.
The change in the actual value of S by the end of the
step is then the difference between the unconstrained final
value and the unconstrained turning point value. This is
indicated in Figure 1b.

4.3 Update of d log P/dt

Now we turn to the update of d logP/dt, which is the most
complicated part of the algorithm, owing to the possible
discontinuities that arise when the feedback term switches
off or back on.

We begin by differentiating equation (25) to obtain
a crude approximation to d logP/dt after an arbitrary
time t′

d logP
dt

crude

=
d logP

dt

∣∣∣∣
0

+
ξ t′

δt1/2∆t
· (29)

Next in the absence of constraints, we substitute
equation (4) into equation (6), rearrange and integrate to
obtain a formal expression for the change in d logP/dt
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across a full step, which we denote δ(d logP/dt)

δ

(
d logP

dt

)
=
ξ δt1/2

∆t

− 1
∆t

∫ δt

0

d logP
dt

(t′) dt′

+
MR

∆t

∫ δt

0

d logP
dt

(t′) dt′. (30)

The above expression is only formal, because the inte-
grands on the right hand side are not known precisely.
However a useful algorithm with the required level of ac-
curacy can be obtained by substituting equation (29) for
these right hand side terms, to obtain

δ

(
d logP

dt

)
=
ξ δt1/2

∆t

− δt

∆t

(
d logP

dt

∣∣∣∣
0

+ 1
2

ξ δt1/2

∆t

)
+
MRδt

∆t

(
d logP

dt

∣∣∣∣
0

+ 1
2

ξ δt1/2

∆t

)
. (31)

Note the level of error associated with equation (31).
We have O(δt/∆t) relative error in each integrand. Since
d logP/dt is itself O(∆t−1/2), at least in the stable regime,
the overall error per step for d logP/dt is O(δt2∆t−5/2).
Velocity errors should persist for roughly one relaxation
time O(∆t), and hence lead to a per step drift for logP
on the order of O(δt2∆t−3/2). This is comparable with the
error already present in the logP update, so our update
algorithms for logP and d logP/dt are compatible.

The above discussion has centred on the unconstrained
case. If instead the constraints apply over the whole
step (i.e. no feedback), the update is also simple. Equa-
tion (31) essentially applies but with the terms involving
MR discarded.

The difficult cases to handle are those where the feed-
back switches off or back on at some intermediate time
during a step. The problem is to determine the time at
which the switch occurs to some acceptable order of ac-
curacy. To determine the switch-off point, which we shall
denote by δtoff , one option is to equate δSuncon(t′) given by
equation (27), to the distance from the constraint bound-
ary, and then to solve the resulting quadratic equation. A
simpler, but less accurate, alternative is to employ a lin-
ear approximation using just the values of S and dS/dt
from the beginning of the step. This is indicated by a
tangent line to the actual saturation curve in Figure 1a.
This simpler alternative can be justified, owing to the rel-
ative rarity of those time steps which actually exhibit a
switch-off. Such an argument is certainly valid once the
price velocity has attained its O(∆t−1/2) root mean square
value, since velocities are then quite persistent, and the
constraint boundary can be crossed at most once per de-
lay time ∆t. There is however a possibility that a price will
hit a constraint boundary, quench and then dither around,
recolliding with the boundary many times, before eventu-

ally acquiring its O(∆t−1/2) velocity and definitively leav-
ing the neighbourhood of the constraint boundary. During
the dither phase, price velocities could be much less than
O(∆t−1/2), making them not anywhere near so persistent,
and this permits more frequent boundary collisions. How-
ever even in these circumstances, it can be shown that col-
lisions occur on average at most once per O(∆t1/2δt−1/2)
steps. A decreased price velocity during dither, also im-
plies a poorer than usual estimate of switch-off time δtoff

if a linear estimate is used as proposed. However this has
no bearing on the overall accuracy of the algorithm be-
cause the feedback term, which is proportional to dS/dt
and hence to d logP/dt, is itself weak during dither.

It is also necessary to handle those time steps during
which a switch-on occurs, denoting the switch-on point by
δton say. Equation (27) can be differentiated with respect
to time, to yield

d (δSuncon)
dt′

= R

(
d logP

dt

∣∣∣∣
0

+
ξt′

δt1/2∆t

)
, (32)

which is then equated to zero giving δton to acceptable
accuracy. A better estimate of δton is not required, because
the nature of the switch-on criterion itself guarantees that
the dS/dt feedback term is relatively unimportant, just as
was discussed above in the context of dither.

The general formula for updating d logP/dt for switch-
off or -on is therefore

δ

(
d logP

dt

)
=
ξ δt1/2

∆t

− δt

∆t

(
d logP

dt

∣∣∣∣
0

+ 1
2
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)
+
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∆t

(
d logP

dt

∣∣∣∣
0
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δt1/2∆t
1
2δt

2
off

)
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∆t

(
d logP

dt

∣∣∣∣
0

(δt− δton)

+
ξ

δt1/2∆t
1
2

(
δt2 − δt2on

))
. (33)

In the above formula we adopt the convention that δtoff =
0 in the case of switch-on alone and δton = δt in the case
of switch-off alone.

5 Numerical results

In this section we present numerical results obtained
via the algorithm of Section 4. We begin by looking
at sample market trajectories, focusing on the distinct
characteristics of stable and unstable markets. Then we
consider mean square and correlation statistics of log
price and price velocity, along with distributions of price
changes. Next we look at the time taken to cross between
boundaries, the time spent dithering around a boundary,
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Fig. 2. Sample Langevin random walk trajectories of log P in
a market with delay time ∆t = 0.01, investor responsiveness
R = 1 and market sensitivity M = 0.

and how saturation values are distributed. Finally we con-
sider a case where chartists sabotage a market, pushing it
between stable and unstable regimes at will.

All simulations we present were performed with δt =
1
10∆t. Most were performed with ∆t = 0.01. This is con-
siderably larger than the ratio between delay and diffusion
times in a real market, but choosing much smaller ∆t val-
ues, would have required a prohibitively small time step.
In qualitative terms, the precise value of ∆t is unimpor-
tant, provided it is small enough to demonstrate a dra-
matic separation between delay and diffusion time scales,
which is the key feature of real markets we wish to model.
We have also chosen R = 1 fixed in most simulations,
while M has been varied. We took logP and d logP/dt to
vanish at the initial instant, and S to be initially at 50%
saturation.

5.1 Trajectories of log P and S

Eight sample trajectories of log P vs. t are shown in
Figure 2 for the parameter value M = 0 with R and
∆t as given above. There is no feedback here, and logP
merely executes a random walk, albeit smoothed over a
time ∆t = 0.01 and lagging slightly behind the forcing. In
Figure 3 we show the trajectories for the same sequence of
random forces, but with M = 0.5. Qualitatively they are
very similar to the trajectories of Figure 2 since the system
remains in the stable regime, but there is a detectable in-
crease in the spreading of the trajectories. The diffusivity
of the system has been increased by the positive feedback.
The value of M is increased further to 1.5 in Figure 4.
The system has entered an unstable regime and a major
qualitative difference can be seen in the trajectories. The
trajectories show rapid up-down transitions interspersed
by less steep portions of curve.

It is interesting to consider a single trajectory and to
compare the profile of logP with that of S. We can see
in Figure 5, which corresponds to M = 0, that changes
in S follow those of logP , except that S is constrained to
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Fig. 3. Sample trajectories of logP in a market with ∆t =
0.01, R = 1 and M = 0.5. The sequence of random forces
for each trajectory is identical to that in Figure 2. There is
a noticeable spreading of the trajectories compared to that
figure, but the market remains in a stable regime.
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Fig. 4. Sample trajectories of logP in a market with ∆t =
0.01, R = 1 and M = 1.5. The sequence of random forces
for each trajectory is again identical to that in Figure 2. The
trajectories exhibit rapid transitions between upper and lower
price boundaries. This is an unstable regime.

lie between 0 and 1. A fairly long section of curve where
S = 0 is evident, punctuated by small bumps, which corre-
spond to the system dithering around near the constraint
boundary.

Analogous data but with M = 1.5 is shown in Figure 6.
The S curve now shows numerous perfectly flat portions
where the constraints S = 0 or S = 1 are imposed. More-
over the curvature of the logP curve changes once S en-
counters its constraints. This corresponds to a switch from
acceleration of logP due to instability, to deceleration of
logP due to quenching. Some of the constrained sections
of the S curve show bumps consistent with dither, but of-
ten the system seems to bounce fairly cleanly between the
constraint boundaries.
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Fig. 5. Sample trajectory of logP (solid line) and correspond-
ing S (dashed line) for ∆t = 0.01, R = 1 and M = 0. The
changes in S mirror those in logP , but S is subject to the
constraints 0 ≤ S ≤ 1. The system spends a comparatively
small proportion of time on the constraint boundaries, and
makes relatively slow transitions between them. This is stable
behaviour.
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Fig. 6. Sample trajectory of logP (solid line) and correspond-
ing S (dashed line) for ∆t = 0.01, R = 1 and M = 1.5.
The system spends a comparatively high proportion of time
pressed against the constraint boundaries S = 0 and S = 1,
and bounces extremely rapidly between them. This is unstable
behaviour.

5.2 Statistics of log P and d log P/dt

Although we can gain useful intuition from considering
individual trajectories, there is always the risk that the
trajectory we select may be in some way atypical. Thus it
is important also to compile statistics over many trajec-
tories.

A useful statistic is the variance of logP about
its initial value logP0. Figure 7 shows a plot of
〈(logP − logP0)2〉 vs. time, for variousM , still withR = 1
and ∆t = 0.01. The data have been obtained by averaging
over 16 384 trajectories. For M = 0 the variance grows lin-
early in t when t� ∆t. This agrees with the case of pure
geometric Brownian motion and with the asymptotic form
given in equation (8). Furthermore a theoretical formula is
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Fig. 7. Statistics of 〈(logP − logP0)2〉 vs. t taken over 16 384
realizations with ∆t = 0.01 and R = 1 in all cases, and M = 0
(solid line), M = 0.5 (long dashes), M = 1 (short dashes)
and M = 1.5 (dotted line). A theoretical result for M = 0
is also shown (dash-dot line) which, after a short lag, grows
like 2t for long times, and this is in good agreement with data.
The larger MR values (unstable cases) show 〈(logP−logP0)2〉
increasing dramatically initially, but this effect is short lived,
and thereafter the rate of increase is the same for all MR
values.

available for M = 0 over the full range of t. This is shown
on the graph, and is in good agreement with data.

As M increases in Figure 7 the curves show increas-
ingly large initial bursts of growth. However these appear
to be extremely short lived, typically only a few multi-
ples of ∆t, after which the constraints must make their
presence felt. Thus the unconstrained unstable runaway
growth described by equation (12) only lasts a very short
time. The surprising feature about Figure 7 is that after
these initial bursts, the slope of each curve is identical
to the M = 0 case. Thus while short lived booms and
crashes may benefit or harm individual investors in the
short term, the quenching mechanism that we propose is
very effective at limiting excessive changes in the market
over the long term.

Note that for the unstable case (MR = 1.5), there
is a definite oscillation in 〈(logP − logP0)2〉 before it
settles down to its straight line growth. The minimum
of this oscillation could correspond to trajectories pass-
ing back close to the initial log price, after hitting the
constraint boundary once and bouncing off it. It should
be remembered that Figure 7 represents an average over
many trajectories. Different trajectories will encounter the
constraints at different times, but nonetheless it can be
sensible to consider a typical time for the system to hit
the boundary and bounce back. However, after several
bounces the uncertainty in the state of the system will be-
come too great to allow one to designate any single trajec-
tory as typical. Thus the oscillatory behaviour is rapidly
damped. These damped oscillations are reminiscent of the
spatial oscillations one encounters in statistical mechan-
ics, when one is calculating the pair correlation function
for packing a number of objects, e.g. hard spheres, into
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Fig. 8. Statistics of 〈(d logP/dt)2〉 vs. t taken over 16 384 re-
alizations with ∆t = 0.01 and R = 1 in all cases, and M = 0
(solid line), M = 0.5 (long dashes), M = 1 (short dashes) and
M = 1.5 (dotted line). By assumption d logP/dt vanishes at
t = 0. A theoretical result for M = 0 is also shown (dash-
dot line) approaching ∆t−1 for long times, and this is in good
agreement with data. In the unstable cases (large MR), an
asymptotic mean square velocity, albeit at a somewhat higher
level, is also achieved. The quenching mechanism is extremely
effective at limiting unbounded increase of 〈(d logP/dt)2〉.

a given space [38,39]. The analogy arises because here we
are attempting to schedule a number of events (bounces)
within a given time.

In Figure 8 we show the mean square of the price ve-
locity 〈(d logP/dt)2〉 for the same set of parameter values
as Figure 7. For simplicity, d logP/dt has been assumed
to vanish at the initial instant. There is a final asymptotic
mean square velocity, in all cases. For M = 0 a theoreti-
cal prediction is given of 〈(d logP/dt)2〉 which is in good
agreement with data, and which agrees with the asymp-
totic prediction of equation (9) in the long time limit.

The final asymptotic mean square velocity is an in-
creasing function of M . For our data the increase is a fac-
tor of roughly ten when M changes from 0 to 1.5. If the
heuristic arguments of Section 3.4 are to be believed, the
mean square velocity would increase only very modestly if
the unstable regime were dominated by dither, but quite
dramatically byO(∆t−1) if the unstable regime were dom-
inated by crossings. The actual case is somewhere between
these two extremes.

Finally in Figure 9 we show the correlation coeffi-
cient (between log price and price velocity) rcorr vs. time.
For M = 0 this decays proportional to (∆t/t)−1/2 when
t � ∆t as per equation (10). There is good agreement
between theory and data. For the unstable system with
M = 1.5, the correlation initially grows with time as early
forcing selects and fixes a direction of price change. How-
ever once the constraint boundaries are encountered, the
correlation crashes down to zero. There is even a brief
period of negative correlation related to the oscillations
noted earlier for Figure 7. Subsequent to this the price
is bouncing rapidly between the constraint boundaries.
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Fig. 9. The correlation coefficient rcorr vs. t taken over 16 384
realizations with ∆t = 0.01 and R = 1 in all cases, and M = 0
(solid line), M = 0.5 (long dashes), M = 1 (short dashes) and
M = 1.5 (dotted line). By assumption d logP/dt vanishes at
t = 0. A theoretical result for M = 0 is also shown (dash-dot
line), in good agreement with data. This decays as (∆t/2t)1/2,
because logP − logP0 depends on the entire forcing history,
whereas d log P/dt only depends on forcing over an O(∆t) in-
terval in the recent past, i.e. there is little correlation between
the log price itself and the price velocity. The largest MR value
(unstable case) shows an initial increase in correlation between
logP − logP0 and d logP/dt as the initial random forcing fixes
the direction of evolution. However this decays rapidly as the
system first hits the constraints. The unstable system there-
after makes rapid transitions between the constraint bound-
aries, so d logP/dt fluctuates in sign, and is poorly correlated
with logP − logP0.

Knowing its value, is therefore no help in knowing its di-
rection of movement.

5.3 Statistics of returns

One potential disadvantage with the variance statistics
considered in the previous subsection is that they can de-
pend on the special initial conditions chosen, in our case
logP = d logP/dt = 0. It is desirable to consider a differ-
ent statistic which does not suffer from this problem. One
such statistic is the “variance of logP returns”. We define
a return to be the difference in log price across a specified
time interval, which is called the return time and denoted
tret. Although the return compares the log price at two
instants separated in time, it does not refer the state of
the market back to any arbitrarily chosen initial condition,
since we can always follow a trajectory for long enough to
ensure that the initial conditions will be forgotten.

Statistics of returns were accumulated by tracking
a single trajectory over a total dimensionless time t =
20 000. We have considered return times tret of 0.001
through 1.024 in powers of 2. This set of tret values brack-
ets ∆t = 0.01, which should ensure that an interesting
range of behaviours will be considered. Throughout we
set R = 1.0, and we treat the cases M = 0.0, M = 0.5,
M = 1.0 and M = 1.5.
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Fig. 10. Standard deviation of returns vs. return time, for
∆t = 0.01 and R = 1.0, and M = 0.0 (�· ), M = 0.5 (+),
M = 1.0 (�· ) and M = 1.5 (×). Statistics are accumulated
over 20 000 dimensionless time units. The dotted lines indi-
cate ∆t−1/2tret and (2tret)

1/2 which are the asymptotic forms
applying (for M = 0.0) at short and long return times respec-
tively. For comparison purposes we also show the time evolu-
tion of standard deviation of log price about its initial value, for
M = 0.0 (solid line), M = 0.5 (long dashes), M = 1.0 (short
dashes) and M = 1.5 (very short dashes). At early times, these
lie far below the corresponding standard deviations of returns,
since the chosen initial condition makes the price slow moving
at first. However at longer times once the initial conditions are
forgotten there is good agreement.

Results for the standard deviations of returns are plot-
ted in Figure 10. For M = 0.0 the returns show a clear
transition from deterministic behaviour for tret � ∆t, to
diffusive behaviour for tret � ∆t. The standard deviation
of returns asymptotes to ∆t−1/2tret for small tret, corre-
sponding to a log price evolving deterministically at the
equilibrium root mean square speed ∆t−1/2. For large tret

the standard deviation of returns is (2tret)
1/2. This cor-

responds to log price executing a random walk with unit
diffusivity.

As M increases the standard deviation of returns also
increases for given tret. However this increase ceases to be
important for tret values bigger than a few multiples of ∆t,
i.e. market instability is of little importance on long time
scales. In the unstable regime withMR = 1.5 the standard
deviation of returns appears to be non-monotonic, with
that for tret = 0.128 being less than that for tret = 0.064.
One expects the local minimum in the standard deviation
of returns corresponds to the time required for a typical
trajectory to cross from one boundary to the other and
back again.

In Figure 10 we have also plotted for comparison the
standard deviation of the log price about its initial posi-
tion (this is simply the square root of the data in Fig. 7).
At times long compared to ∆t there is good agreement
between the standard deviation of returns and the stan-
dard deviation about the initial value. This is because at
long times the arbitrary initial price velocity is forgot-
ten. However at short times on the order of ∆t or less,
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Fig. 11. Distributions of normalized returns for M = 1.5,
R = 1.0 and ∆t = 0.01, and return times tret of 0.001
(solid line), 0.032 (long dashes) and 1.024 (short dashes). For
tret = 0.001 the normalized distribution has a central peak plus
broad shoulders. For tret = 0.032 the distribution exhibits very
prominent wings, while for tret = 1.024 it has a relatively Gaus-
sian appearance. All data have been accumulated over 20 000
dimensionless time units.

the standard deviation about the initial value is much
smaller than that of the returns: our chosen initial con-
dition logP = d logP/dt = 0 causes the price to be slow
to start moving. Recall also that for MR = 1.5, the stan-
dard deviation of logP about the initial location shows
damped oscillations with time, and these correlate well
with the non-monotonic behaviour of the standard devia-
tion of returns.

5.4 Distributions of returns

In the previous subsection we considered one statistic of
the returns, the standard deviation. Since the mean re-
turn vanishes here (no mean market growth or interest
rates in the model), the standard deviation would be suf-
ficient to characterize completely a Gaussian distribution
of returns. However it is well known in financial systems
[9,21–29] that the distribution of returns is non-Gaussian,
in particular the tails of the distribution should have a
much higher weight than a Gaussian would permit. In the
absence of feedback M = 0.0, the model we consider re-
duces to a linear Langevin equation, which can be shown
to give Gaussian behaviour. We ask therefore whether a
non-zero value of M can produce a non-Gaussian distri-
bution. For simplicity we consider here only the value
M = 1.5 which has strong feedback (along with R = 1.0
and∆t = 0.01 as before). Again statistics are accumulated
over a dimensionless time of t = 20 000.

In Figure 11 we have plotted the distributions at
tret = 0.001, tret = 0.032 and tret = 1.024. These distribu-
tions have been normalized by their standard deviations,
so that we can focus more closely upon their shape, rather
than merely their width. For the largest return time con-
sidered tret = 1.024 � ∆t, the distribution is relatively
Gaussian in appearance. However for the smallest value
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Fig. 12. Distributions of returns (unnormalized) for M = 1.5,
R = 1.0 and ∆t = 0.01, with returns accumulated over 20 000
dimensionless time units, and with return times tret = 0.016
(solid line), tret = 0.032 (long dashes), tret = 0.064 (short
dashes) and tret = 0.128 (very short dashes). For tret = 0.016
the distribution has a central peak with shoulders. As tret in-
creases to 0.032 the shoulders broaden into wings, while for
tret = 0.064, the wings are very prominent. Here the wings
occur for returns of roughly ±1.5 corresponding to the sys-
tem crossing from one constraint boundary to the other (log P
changes by unity), plus some overshoot of log P during quench-
ing. For tret = 0.128 the distribution is starting to tend to a
Gaussian shape.

tret = 0.001 � ∆t, the distribution is non-Gaussian. It
has a central peak, surrounded by fairly broad shoulders,
finally merging into the tails. Thus there is a population
of small magnitude returns giving the peak, and a pop-
ulation of larger magnitude returns giving the shoulders.
In spite of this additional structure, the distribution still
falls off quite rapidly (like a Gaussian) in the tails.

For an intermediate tret = 0.032, the shoulders of the
distribution develop into wings, i.e. the distribution de-
velops secondary peaks away from a zero return. The dis-
tribution tails off rapidly beyond these wings.

In order to understand the significance of the wings we
have plotted in Figure 12 several more distributions for
times tret of 0.016, 0.032, 0.064 and 0.128. We have not
normalized these distributions by the standard deviation
here, which means they become broader as tret increases.

For tret = 0.016 the distribution is still qualitatively
rather like that in Figure 11 for a very short return time
tret = 0.001, i.e. it has a central peak and shoulders.
However as the return time increases in Figure 12 to
tret = 0.032 the wings develop, and they become very
prominent for tret = 0.064.

The advantage of plotting distributions of unnormal-
ized returns here is that it becomes immediately apparent
that the peaks of the wings are for returns, i.e. changes
in logP , of around ±1.5. Returns of this magnitude must
correspond to S swinging between the constraint bound-
aries at zero and unity, during which period log P would
change by precisely ±1 for R = 1.0. After S hits the con-
straint, logP must overshoot during quenching, so that

the overall change in logP is somewhat larger than unity.
For yet longer return times tret = 0.128 or greater, we are
no longer looking at a single upswing or downswing, but
rather the cumulative effect of two or more such consec-
utive swings. There is no longer a typical logP return of
±1.5, so the wings disappear, and overall the distribution
broadens. The distribution for tret = 0.128 is tending to-
ward a Gaussian. Its shape is not too different from the
tret = 1.024 distribution in Figure 11.

Whilst it is encouraging that overall non-Gaussian dis-
tributions can be produced by the model considered, the
tails of the distributions in Figures 11, 12 still fall off very
rapidly, just like Gaussian tails. Therefore the model in its
current form does not capture all features of a real market
for which we have stated the tails should receive a much
higher weight [9,21–29]. It is interesting to consider what
changes would be required in the model to reproduce the
observed tail weightings. Lux and Marchesi [9] have con-
sidered a model in which individual investors can either
adopt or abandon speculating strategies according to the
state of the market. They find that high volatility bursts
produce the non-Gaussian tails and that these bursts are
associated with an abnormally high number of investors
behaving as speculators. In the context of the present
Langevin type model this would correspond to coupling
the responsiveness R to the state of the market logP and
d logP/dt. Note that one possible type of coupling has al-
ready been proposed via the risk averse term of Bouchaud
and Cont [30]. However it is not clear whether such a
term by itself can reproduce the required tail weightings
for the distributions. Other aspects of investor behaviour
may need to be modelled too. For instance, if the market is
evolving rapidly (large d logP/dt), and many high profile
players are making quick profits, the associated publicity
may well induce others to play the market, leading to an
increase in R. We do not pursue such extensions to the
model here.

5.5 Crossing and dither time

It is desirable to find suitable statistics that clearly show
the change in governing time scale from an O(1) scale to
an O(∆t) scale as the system enters the instability regime.

We have chosen two suitable statistics called crossing
time and dither time which we define precisely as follows.
Crossing time is the transit time from one boundary to the
other, conditional on not returning to the original bound-
ary. Each crossing is followed by a short quenching phase
during which d logP/dt falls to zero. The quenching phase
duration is always on the order of ∆t, irrespective of the
stability regime. In practice more unstable systems take
very slightly longer to quench since they exhibit more vi-
olent collisions with the boundaries. The dither time is
the time taken from the end of quenching to the start of
the next crossing. The system may leave and return to
the boundary several times during the dither phase, con-
ditional on it not reaching the opposite boundary.

Figure 13 shows a plot of crossing and dither time for
R = 1, ∆t = 0.01 and M varying. The curves represent
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Fig. 13. Average crossing time between the constraint bound-
aries (�), average dithering time near either constraint
boundary (+), and average quenching time after hitting a
boundary (�) as functions of MR. These data are averaged
over 10 000 crossing events and correspond to ∆t = 0.01, R = 1
and M varying. As MR increases, the transitions themselves
occupy less time, and since even small fluctuations can nucleate
a crossing event, correspondingly less time is spent dithering.
The quenching time is O(∆t) in all cases, but increases slowly
with MR as a result of more violent collisions. Rough esti-
mates of the crossing time 1

2
(1−MR)2R−2 (stable regime) and

∆t (MR − 1)−1 (unstable regime) given by equations (18, 19)
agree only qualitatively with data (dashed lines).

an average over 10 000 crossings for each M . Clearly there
is a dramatic decrease in both crossing and dither as the
instability regime is approached. For larger MR the sys-
tem finds it easier both to cross between the boundaries,
and to receive a fluctuation permitting it to leave a bound-
ary. Dither time is about twice as large as crossing time in
the stable regime, but roughly the same as crossing time
for the most unstable case considered MR = 1.5. Also
shown in the figure, are heuristic guesses of how the cross-
ing time should vary based on equations (18, 19). These
show only qualitative agreement with data.

The system is pressed against the constraint bound-
aries during the entire quenching phase and during part
of the dither phase. As the crossing and dither time fall,
and become comparable with the O(∆t) quenching time,
it is reasonable to suppose that the system might spend a
higher proportion of its time on the boundary. That this
is the case can be seen in Figure 14. When MR = 1.5 the
system spends nearly half its time on a boundary, which
is a factor of three greater than the corresponding propor-
tion when MR = 0.

5.6 Histograms of S

In Figure 15 we show a histogram of saturation S values
for the parameters M = 0, R = 1 and ∆t = 0.01. The
histograms have been binned over a total time t of 20 000,
corresponding to 2× 107 steps. For clarity points actually
on the constraint boundaries have been discarded, other-
wise they would give excessive weight to the terminal bins.
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Fig. 14. Proportion of time spent on the constraint boundary
as a function of MR, again for ∆t = 0.01, R = 1, M vary-
ing and averaged over 10 000 crossing events. As the unstable
regime is approached and the crossing time (off the bound-
ary) and dither time (partly on the boundary) both fall, the
quenching phase (invariably on the boundary) becomes an in-
creasingly important component of the dynamics.
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Fig. 15. Probability histogram binned over proportion of
shares held for ∆t = 0.01, R = 1, M = 0, and a total time
of 20 000. For clarity, data actually on the constraint bound-
aries are not indicated, so the sum of the probabilities shown
is strictly less than unity.

The histogram is remarkably flat over a wide range of S
values, which is consistent with a random walk with no
preferred position. There is of course an accumulation of
points near S = 0 and S = 1 owing to the presence of the
constraints. However only points within O(∆t1/2) of the
constraint boundaries are affected by this accumulation,
because this distance corresponds to an O(∆t−1/2) root
mean square velocity persisting over an O(∆t) correlation
time.

A corresponding histogram for M = 1.5 (unstable
case) is shown in Figure 16. The histogram is no longer
so flat. This is because the system spends a high pro-
portion of time dithering near the constraint boundaries,
but tends to pick up speed as it executes a crossing. Very
little time is therefore spent in the centre of the domain.
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Fig. 16. Probability histogram binned over proportion of
shares held for ∆t = 0.01, R = 1, M = 1.5, and a total time
of 20 000. For clarity, data actually on the constraint bound-
aries are not indicated, so the sum of the probabilities shown is
strictly less than unity. Owing to the rapid transitions in this
unstable regime, which actually accelerate during the cross-
ing, proportionately less time is spent far from the constraint
boundaries than was the case for MR = 0. Also shown (dashed
line) is a trial functional form for the probability distribution
from equation (23). This is the form we expect for trajectories
accelerating exponentially in time, and it agrees only qualita-
tively with data.

The functional form suggested by equation (22) is included
on the graph, scaled to the correct value at the centre. It
shows only qualitative agreement with the data.

5.7 Market sabotage

The stability-instability behaviour of the model allows
the intriguing possibility of investors forcing the market
from a stable to an unstable regime by modulating their
R value. This could be viewed as a form of economic
sabotage.

In order to distinguish clearly between phenomena on
the diffusion and delay time scales, we have made ∆t
very small here, ∆t = 0.0005. Since we have retained
δt = 1

10∆t, simulation is expensive, but as we are in-
terested here in a single sample trajectory, rather than
obtaining statistics over many trajectories, the computa-
tion continues to be feasible. We have fixed M = 1 here,
and allowed R to vary sinusoidally from 0.1 to 1.5 with
oscillation period 0.1.

The results are shown in Figure 17. It is clearly seen
that the market exhibits quiescent phases during which
only slow changes take place, followed by noisy phases
during which rapid bursts of activity occur. The bursts
happen at regular intervals corresponding to the maxima
of MR.

The oscillation period has been deliberately chosen
here to be intermediate between the O(1) diffusion time
and the O(∆t) delay time. This ensures that the market
changes comparatively little between bursts, but bounces
between the constraint boundaries many times during an
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Fig. 17. A sample logP trajectory where investors are sabo-
taging the market by modulating their responsiveness R. The
parameter values are ∆t = 0.0005 and M = 1, while R varies
sinusoidally between 0.1 and 1.5 with oscillation period 0.1.
Bursts of rapid random activity are seen near the instanta-
neous maxima of MR, with quiescent phases between them.

individual burst. It is permissible to think of the model
crudely as being a two state system, with the states be-
ing a high price state (saturation near unity) and a low
price state (saturation near zero). The state is completely
randomized by the bursts, and afterwards is more or less
frozen till the next burst. We have effectively a Markov
chain of states. This phenomenon is rather reminiscent of
stochastic resonance in physics [40,41], for which modula-
tion and noise couple nonlinearly to induce transitions in
a bistable system.

The ability to perform sabotage is of limited use in
the present model, since the saboteurs cannot really pre-
dict whether the market will boom or crash as a result of
their actions, only that it will become extremely unpre-
dictable. However if a risk aversion term were included in
the model [30], the saboteurs could be fairly confident of
engineering a crash.

The sort of information considered above may also be
of use to a central bank contemplating intervention to sta-
bilize a market. The stability criterion MR = 1 provides a
quantitative measure of the appropriate level of interven-
tion, i.e. the size of the negative contribution to R that
would be required.

6 Concluding remarks

The Langevin model for asset price can exhibit both stable
and unstable regimes, depending on the market sensitiv-
ity to investor activity and on the investor response to
price change. The stable-unstable transition is interesting
because of the large difference in time scale between the
slow stable behaviour (governed by the market volatility
in the absence of feedback, typically on the order of years)
and the rapid unstable behaviour (governed by the delay
time, and on the order of minutes). Even when the short
term unstable behaviour is present, a stabilizing influence
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operates via a quenching mechanism when the market be-
comes either deserted or saturated by chartists. In spite of
the opportunities for individuals to make a quick profit (or
loss) owing to the fast instabilities, the quenching mech-
anism is very effective in the long term, and the market
behaviour is quite robust, being very little different from
that in the absence of feedback.

The model studied in the present paper is a delib-
erately simplified one: our aim here was to formulate a
crude description containing the crucial ingredients of de-
lay, feedback and quenching. It is worthwhile speculating
how the model behaviour might be altered when more
realistic effects are introduced. The three refinements we
discuss briefly below are

1. investor delay,
2. mean market growth/interest rates, and
3. profit taking/corporate raiding.

6.1 Investor delay

If an investor delay ∆ti is added to the response on top
of the market delay ∆t, it can be shown that the coupled
price-saturation equations analogous to equations (2, 5)
have two eigenvalues. One is always negative, and the
other is negative if and only if MR < 1, regardless of
the ratio ∆ti/∆t. Thus the boundary between stable and
unstable behaviour remains at MR = 1, but the actual
growth and decay rates become sensitive to investor de-
lay. In the limit ∆ti/∆t � 1, and in the stable regime,
decay rates are 1/∆ti and Λs/∆t respectively. The less
stable rate is Λs/∆t so the results of the present paper
are regained. In the opposite limit ∆ti/∆t� 1, the rates
become Λs/∆ti and 1/∆t, the former now being the less
stable. In the unstable regime, the less stable rate switches
sign from decay to growth. These rates follow identical for-
mulae, but with Λu replacing Λs.

6.2 Mean market growth/Interest rates

Suppose that a constant bias ν drives the asset price in
addition to the random noise Ξ. Further suppose an in-
terest rate ρ < ν is available on riskless investments, mak-
ing the (risky) market attractive to chartists only when
d logP/dt > ρ. In the absence of feedback, logP grows
at a mean rate ν, while feedback effects can be shown to
increase this to ν + (1 − Λs)(ν − ρ)/Λs. For long enough
times, mean growth (linear in time) will always dominate
the spread of log price (square root with time). In other
words investors are almost certain to profit from shares
provided they retain these investments long enough.

In the unstable regime MR > 1, mean market growth
introduces an asymmetry which forces the system against
the upper constraint boundary in preference to the lower.
However crashes will not be eliminated altogether, because
the mean growth rate ν is unlikely to dominate the price
velocity fluctuations (scaling like ∆t−1/2) that cause tran-
sition. Moreover non-zero interest rates tend to reduce the

upper-lower asymmetry slightly. Indeed there is a height-
ened sensitivity to interest rates in the unstable regime:
ν/ρ must exceed MR, not merely unity, if the market is
to grow on average. However the question of mean market
growth is somewhat irrelevant here, since it may be shown
that the spread of logP values vastly exceeds the change
in the mean by a large factor on the order of ∆t−1/2. Thus
in the unstable regime, the only “prediction” we can re-
liably make, is that the market very rapidly becomes un-
predictable! This shift from a sure profit to a very risky
regime occurs because investors can no longer detect the
underlying mean growth beneath the magnified noise [18].

6.3 Profit taking/Corporate raiding

The quenching mechanism we have considered here is that
the chartists either saturate the market (during a boom)
or desert it altogether (during a crash). In real markets, in-
vestors may decide to sell during a boom, if the asset price
has risen sufficiently above the purchase price (profit tak-
ing). Likewise an asset whose share price is crashing, may
become attractive to a corporate raider hoping to strip
the assets of the company. These are examples of fun-
damentalist rather than chartist behaviour, which should
stabilize the market. However as the market exhibited long
term stability even with the comparatively weak quench-
ing mechanism studied in this paper, the long term effects
of profit taking/corporate raiding are expected to be min-
imal. These effects would however be needed to describe a
sequence of mini-booms or mini-crashes following one af-
ter the other, instead of the alternate booms and crashes
we have found here.

The author wishes to thank Prof. G. Papanicolaou for helpful
advice and Mr M. Rashid for suggesting some key references.
Dr J.J. Cilliers is thanked for reading the manuscript.
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